Essentials of Specimen Preparation for High Performance Volume Imaging by SEM

Thomas J. Deerinck

1The National Center for Microscopy and Imaging Research, UCSD, La Jolla, California, USA.

The unlikely application of scanning electron microscopy (SEM) to 3-D imaging of epoxy embedded specimens has burgeoned over the last few years and will likely eventually supplant conventional TEM as the mainstay of wide-field nanometer-scale cytology of biological specimens. Three different approaches have come to the forefront: Serial block-face SEM (SBEM), whereby a specialized miniature ultramicrotome is fitted into a SEM and the mirror-smooth block-face imaged using backscatter electrons (BSEs) in between automated removal of the surface using a diamond knife; focused ion beam SEM (FIB-SEM), which achieves much the same thing but instead removes the surface material using a focused ion beam; and array tomography SEM (AT-SEM), employing ribbons of serial sections prepared using an ultramicrotome that are mounted on special tape or silicon wafers prior to BSE-SEM imaging. Each of these methods has its own strengths and weaknesses (for review, see [1]), but common to each are the approaches used to prepare biological specimens prior to imaging. Since BSE yield is meager at the low accelerating voltages typically employed (1-4 keV), combinatorial intense heavy metal staining of cells and tissues is needed to maximize BSE yield and improve specimen conductivity in order to minimize specimen charging; important since the samples are embedded in non-conductive epoxy resins. One of the first staining protocols developed specifically to maximize BSE yield from epoxy embedded specimens by SEM employed a variety of previously introduced heavy-metal stains, including potassium ferrocyanide-reduced osmium tetroxide, liganding with thiocarbohydrazide followed by a second osmium tetroxide treatment, and en bloc uranyl acetate and lead aspartate staining prior to epoxy embedding [2]. This approach made possible block-face imaging of tissues at high vacuum instead of variable-pressure SEM, vastly improving image acquisition speed and achievable resolution. Recently, a protocol (termed BROPA, for brain-wide reduced-osmium staining with pyrogallol-mediated amplification) was developed to achieve homogeneous staining of the entire mouse brain [3], and subsequent modifications have drastically shortened the time required to prepare samples using this method [4]. The ultimate goal of these and future approaches is to try and obtain the same type of image information using these SEM techniques as is currently obtained by ultrathin-section transmission EM (figure 1).

In addition to these protocols, new molecular-genetic imaging probes such as miniSOG [5] and the ascorbate peroxidase derivative APEX [6], as well as new chemical labels [7, 8] have been developed to selectively contrast macromolecules in 3-D with excellent cellular preservation, since they do not require compromises to primary chemical fixation or the use of permeablizing detergents, and are all easily adapted to SBEM, FIB-SEM and AT-SEM (figure 2). These probes and others under development promise to greatly improve the ability for 3-D localization of cellular constituents at high resolution. Furthermore, a method to combine hybrid high-pressure freezing methods with EM-level genetic labeling and heavy metal staining has been introduced, thereby enhancing subcellular morphological preservation of difficult to preserve samples [9]. Finally, the introduction of gas-injection based charge compensation has essentially eliminated specimen charging of samples using SBEM and allows for high vacuum imaging for vastly improved resolution from any sample [10].
Figure 1. Block-face BSE-SEM image taken at 1.9 keV (left panel) and the corresponding serial ultrathin-section TEM image of the same region taken at 80 keV (right panel) using heavy metal stained brain tissue prepared as described [2]. The images are nearly equivalent. Bars = 0.25 microns.

Figure 2. The genetic labeling probe miniSOG (left panel) used to localize the viral protein E4-ORF3 in a cultured cell nucleus, APEX2 used to label the protein PSD-95 (arrows) in cultured hippocampal neuron synapses (middle panel), and click-chemistry labeled DNA incorporated with 5-ethynyl-2'-deoxyuridine (right panel). Bars = 0.5 microns.

[11] Funding for this work was from NIGMS (P41GM103412) to M. Ellisman, NCMIR.