Plasmonic-Photonic Hybrids by Freeze-Casting: Ag decorated 1D and 2D TiO$_2$ Hollow Patterned Nanostructures for Green Photocatalysis

Filip Mamon1, Jakub Mares1, Jakub Tolasz1, Michaela Sramova Slusna1, Tatjana Brovdyova2, Bara Komarkova1, Radek Fajgar3 and Snejana Bakardjieva1

1 Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 69 Rez, Czech Republic.
2 Faculty of Mechanical Engineering, J.E. Purkyne University, Pasteurova 3334/7, 400 96 Usti n/Labem, Czech Republic.
3 Institute of Chemical Process and Fundamentals of the Czech Academy of Sciences, Rozvojova 2/135, 165 02 Prague, Czech Republic.

* Corresponding author: snejana@iic.cas.cz

Titania, in particular anatase TiO$_2$ has been extensively used in photoelectrochemistry (dye-sensitized TiO$_2$ electrodes for water splitting) and photocatalysis (TiO$_2$ based catalysts for degradation of emerging environmental substances). TiO$_2$ is the most studied photocatalyst because of its non-toxicity and chemical stability [1]. On the other hand, high recombination rate of the photogenerated electron-hole pairs restricts the photocatalytic activity of TiO$_2$ and novel strategies to design effective TiO$_2$ photocatalysts for enhanced light harvesting could be developed. Several reports have been announced to increase the lifetime of the generated electron-hole pairs by loading of noble, Ag metal nanoparticles (NPs) onto the TiO$_2$ surface, which can act as electron trapping centers.

In this work we demonstrated the capability of the ice-templating phenomenon, reported also as the ice-segregation-induced self-assembly (ISISA) process, for synthesis of Ag modified TiO$_2$ materials with highly sophisticated structures – 1D TiO$_2$ microrods (MRs) and 2D TiO$_2$ nanosheets - hierarchical materials demonstrating different levels of spatial organization. 1D TiO$_2$ MRs and 2D TiO$_2$ NSHTs with dense polyhedral stacked 3D nanovoids were prepared by using simple freeze-casting (a cryo-lyophilization) procedure [2, 3]. Hierarchical morphologies of nanocavities start to appear at temperature higher than 800 °C and are strongly influenced by polymorph TiO$_2$ cavities evolution competing reactions.

The morphology of Ag modified 1D TiO$_2$ sample annealed at 800 °C is shown in Fig. 1a-c. Photoelectrochemical measurements were conducted with deposited of as obtained sample on FTO glass substrates. The layer was then dried and fixed to the electrode surface by heating (500°C, 1hr). The cyclic voltammetry was studied between bias potentials -0.5 and +0.5 eV with Pt counter electrode, Ag/AgCl reference electrode in 0.5M H$_2$SO$_4$ as an electrolyte. 2cm2 of the electrode surface with 0.66 mg of the deposited sample was irradiated by Vis light (100W). Efficient hydrogen generation on Pt and oxygen on working electrodes were observed (Fig. 1d). The best catalysts exhibited enhanced photocatalitic activity under UV light in decomposition of 4 chlorophenol was Ag modified 2D TiO$_2$ sample annealed at 800°C (Ag$_2$DTiO$_2$/800). The photocatalitic activity of Ag$_2$DTiO$_2$/800 sample, with nanocavities is much higher than that of TiO$_2$ without nanocavities. The extra ordinary photoactivity could be explained by evenly distributed nanocavities inside perfectly crystallized 2D TiO$_2$ nanocrystals with homogeneously dispersed metallic Ag on their surface. Figure 2 revealed microstructure of Ag$_2$DTiO$_2$/800.
References:

[4] The authors acknowledge funding from the Czech Science Foundation (Project GACR 18-15613S).

Figure 1. Ag modified 1DTiO$_2$ MRs obtained at 800°C (a-c) morphology by BF and HAADF detectors (d) voltammetry curve.

Figure 2. Digital image, AFM and HAADF observations (top row), TEM images and UV/Vis spectra of Ag modified 2D TiO$_2$ nanosheets obtained at 800°C (bottom row).