Nanostructured TiO$_2$ Microrods with 3D Nanovoids for Green Photocatalysis - PEC Water Splitting

Snejana Bakardjieva1, Maria Caplovicova2, Filip Mamon1, Radek Fajgar3, Vera Jandova3, Tatjana Brovdyova4

1. Institute of Inorganic Chemistry of the Czech Academy of Sciences, 205 68 Rez, Czech Republic.
2. Centre for Nanodiagnostics, STUBA, Vazovova 5, 811 07 Bratislava, Slovak Republic.
4. Faculty of Mechanical Engineering, J.E. Purkyne University, Pasteurova 3334/7, 400 96 Usti n/Labem, Czech Republic.

* Corresponding author: snejana@iic.cas.cz

Titanium dioxide (TiO$_2$) has been studied for several decades due to its versatility for a diverse range of applications. TiO$_2$ is robust, thermally stable, non-toxic, as well as inexpensive. One-dimensional (1D) TiO$_2$ nanostructures have attracted attention because of their unique optical and electronic properties. The first study of photoelectrochemical (PEC) water splitting on TiO$_2$ was reported in 1972 by Fujishima and Honda [1] showed that TiO$_2$ photoanode exhibits outstanding PEC properties, which may be utilized for the conversion of solar energy into chemical energy. It was known that TiO$_2$ could not be used in the visible light region and could only split water under UV light irradiation. The large band gap (3.0 – 3.2 eV) is the reason why TiO$_2$ is transparent across the entire visible spectral range. The efficient photocatalysts which could produce electron–hole pairs under VIS light irradiation should be developed because VIS light occupied 43% of sunlight.

Novel nanostructures with dense-stacked nanocavities inside 1DTiO$_2$ have been prepared, which present excellent photocatalytic and PEC properties. Recently was observed [2] that the photocatalytic activity of 1D-bicrystalline nanoribbons with alternate structure of TiO$_2$(B) and anatase under visible light irradiation was due to the formation of nanocavities inside the TiO$_2$ nanocrystals. The research revealed that TiO$_2$(B) with nanocavities exhibited a narrow band gap and improved its absorbance coefficient in the UV region. An enhanced optical absorption induced by dense nanovoids inside titania nanorods was also reported by Han et al. [3]. The molar absorption coefficient of TiO$_2$ nanorods with nanovoids was found to be about 25% higher than that of TiO$_2$ without nanovoids.

Our group has recently reported an environmental friendly, smart and unexpensive preparation method for the synthesis of 1DTiO$_2$ microrods (MRs) in aqueous media starting with hydrated titanyl sulfate crystals (TiOSO$_4$.2H$_2$O). The method is based on the extraction of sulfate ions from the TiOSO$_4$ crystals and their replacement with hydroxyl groups in aqueous ammonia solution leaving the Ti–O framework intact [4] (Fig. 1a-d). Heat treatment process (from 500 to 950 °C) causes the evaporation of nanoconfined water which hollowing out empty spaces inside the 1DTiO$_2$ MRs. The self-assembled nanovoids along certain crystallographic directions of anatase NCs were confirmed by STEM and EELS study (Fig. 1e-g). The nanovoids with size ranging from 5 to 78 nm in both, length and width, and depth of about 9 nm (Fig. 1e) are responsible for the possibilities of applying 1DTiO$_2$ in the photoelectrochemistry as a stable working electrodes. We are concerned with the nanovoid phenomenon as governed by the evaporation of ice (water) and found that the as-created dense 3D nanovoids...
enhanced significantly the electrochemical properties of TiO\textsubscript{2}, thereby providing a new approach to increase the reactivity of 1D TiO\textsubscript{2} MRs for use in the PEC cell for water splitting (Fig. 1h). The incorporation of Ag, Au or Cu nanoscale particles could make a promising future for 1D TiO\textsubscript{2} MRs to be applied in the PEC systems.

References:

[5] The authors acknowledge funding from the Czech Science Foundation (Project GACR 18-15613S).

![Figure 1](image-url). HRTEM observation of 1D TiO\textsubscript{2} MRs (a) BF image (b) Z-contrast image of nanovoids by HAADF (c-d) anatase crystals along the [111] direction (e) Z-contrast image of single nanovoid with the position of the EELS spectra indicating the depth of the nanocavity 9 nm (f) HRTEM observation of single nanovoid (g) EELS analysis confirming TiO\textsubscript{2} (h) voltammetry in dark and under light irradiation.