Measurement of the Point Spread Function for Low-Loss Inelastic Scattering

R.F. Egerton1*, A.M. Blackburn2, R.A. Herring3, L. Wu4 and Y. Zhu4

1. Physics Department, University of Alberta, Edmonton, Canada T6G 2E1.
2. CAMTEC, University of Victoria, Canada V8W 2Y2.
3. Microscopy Facility, University of Victoria, Canada V8W 2Y2.
4. Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.

* Corresponding author: regerton@ualberta.ca

The delocalization of inelastic scattering is described by a point spread function PSF(r) that represents the scattering probability as a function of the distance r from the trajectory of an incident electron. For core-loss scattering, the PSF has sub-nm or even subatomic dimensions but for low-loss scattering ($E < 50$ eV) its width can be several nm or tens of nm. This width determines the spatial resolution of TEM-image features that arise from inelastic scattering, and partially determines the minimum line-width achievable in electron-beam lithography [1] or e-beam deposition [2,3].

Quantum dipole theory gives PSF $\approx [K_{1}(r/b_{\text{max}})]^2 + [K_{0}(r/b_{\text{max}})]^2$ with $b_{\text{max}} = 1/(k_{0}\theta_{E})$. Fourier transform of the angular distribution of the inelastic scattering amplitude gives PSF $\approx [b_{0}^2/(r^2+b_{0}^2)] \exp(-r/b_{\text{max}})$ with $b_{0} = 1/(2k_{0}\theta_{c})$. Both expressions yield very similar results for $r > b_{0}$ but the second version avoids a singularity at $r = 0$ by including a cutoff in the angular distribution of intensity at $\theta_{c} = (2\theta_{E})^{1/2}$. But doubt remains about the most appropriate value of b_{0} [4], which is perhaps best resolved experimentally.

Measurement of the PSF is possible by recording a sub-nm probe (focused on a thin specimen) through an imaging filter (e.g. Gatan GIF). The specimen should be thin enough to avoid significant beam broadening, and aberrations of the probe-forming and imaging lenses must be minimized [4]. Our procedure has been to focus and aberration-correct the objective and condenser lenses with the GIF set for zero loss, then increase the TEM high voltage by a few eV and refocus the condenser system for minimum image width (if necessary) before recording the probe image at high magnification.

Results are shown in Figs. 1 and 2. The measured PSF approximates to $1/r^2$ for $r > 0.1$ nm, as expected. The full width at half maximum (FWHM) exceeds $2b_{0}$, likely due to a change in phase or incoherency of the inelastic scattering at higher angles [4]. For $E < 5$ eV, the estimated median delocalization diameter is about 60% of that given by the approximate formula: $d_{50} = 16\text{nm}/E^{3/4}$. For $E > 5$ eV, our measured FWHM and d_{50} values start to increase with increasing energy loss, suggesting that chromatic aberration is interfering with measurement at these higher values of energy loss [5].

References:

[5] The authors acknowledge funding the Natural Sciences and Engineering Research Council of Canada.
Figure 1. Left: measurement scheme schematic. Right: Inelastic-scattering PSF as measured (black data points) and with background correction (green data points) together with a PSF calculated using the Lorentzian formula (blue dashed curve) and compared with a $1/r^2$ dependence (dotted red line).

Figure 2. Left: FWHM before and after correcting for 0-eV probe diameter, compared with two estimates based on theory. Right: measured median diameter (blue squares) compared with $16\text{nm}/E^{3/4}$ (descending curve, green squares). The two lower curves show the measured FWHM (red squares) compared with a schematic estimate of chromatic aberration (yellow data points).